Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 295
Filter
Add filters

Document Type
Year range
1.
Proceedings of SPIE - The International Society for Optical Engineering ; 12597, 2023.
Article in English | Scopus | ID: covidwho-20245120

ABSTRACT

Contemporarily, COVID-19 shows a sign of recurrence in Mainland China. To better understand the situation, this paper investigates the growth pattern of COVID-19 based on the research of past data through regression models. The proposed work collects the data on COVID-19 in Mainland China from January 21st, 2020, to April 30th, 2020, including confirmed, recovered, and death cases. Based on polynomial regression and support vector machine regressor, it predicts the further trend of COVID-19. The paper uses root mean squared error to evaluate the performance of both models and concludes that there is no best model due to the high frequency of daily changes. According to the analysis, support vector machine regressors fit the growth of COVID-19 confirmed case better than polynomial regression does. The best solution is to utilize different types of models to generate a range of prediction result. These results shed light on guiding further exploration of the growth of COVID-19. © 2023 SPIE.

2.
CommIT Journal ; 17(1):13-25, 2023.
Article in English | Scopus | ID: covidwho-20243473

ABSTRACT

With the rising number of COVID-19 cases in Indonesia, the government has implemented the Imposition of Restrictions on Emergency Community Activities (Pemberlakuan Pembatasan Kegiatan Masyarakat - PPKM) as Indonesia's COVID-19 policy. Several controversies and protests have colored the implementation of this emergency policy. Some netizens on Twitter voice their opinions about the policy in their tweets. Emotions in tweets can be recognized through text-based emotion detection or emotion analysis. However, text-based emotion detection is a challenging task. One of the main issues in classifying text with a machine learning-based approach deals with the feature dimensions. As a result, appropriate methods for accurately identifying emotion based on the text are required. The research studies an emotions analysis task on Indonesians' PPKM-related tweets to understand their emotional state while implementing the PPKM. The machine learning classification algorithms used are Support Vector Machine (SVM) and random forest. The total number of tweets is 4,401. The results show that SVM with linear kernel function combined with the TF-IDF and Chi-Square methods outperforms other classifiers with an accuracy of 0.7528. The accuracy value is higher than those obtained by previous studies. Moreover, the results of the emotion classification on PPKM tweets reveal that most Indonesians are unhappy with the implementation of the PPKM policy. © 2023 Bina Nusantara University. All rights reserved.

3.
2023 6th International Conference on Information Systems and Computer Networks, ISCON 2023 ; 2023.
Article in English | Scopus | ID: covidwho-20242881

ABSTRACT

Coronavirus illness, which was initially diagnosed in 2019 but has propagated rapidly across the globe, has led to increased fatalities. According to professional physicians who examined chest CT scans, COVID-19 behaves differently than various viral cases of pneumonia. Even though the illness only recently emerged, a number of research investigations have been performed wherein the progression of the disease impacts mostly on the lungs are identified using thoracic CT scans. In this work, automated identification of COVID-19 is used by using machine learning classifier trained on more than 1000+ lung CT Scan images. As a result, immediate diagnosis of COVID-19, which is very much necessary in the opinion of healthcare specialists, is feasible. To improve detection accuracy, the feature extraction method are applied on regions of interests. Feature extraction approaches, including Discrete Wavelet Transform (DWT), Grey Level Cooccurrence Matrix (GLCM), Grey Level Run Length Matrix (GLRLM), and Grey-Level Size Zone Matrix (GLSZM) algorithms are used. Then the classification by using Support Vector Machines (SVM) is used. The classification accuracy is assessed by using precision, specificity, accuracy, sensitivity and F-score measures. Among all feature extraction methods, the GLCM approach has given the optimum classification accuracy of 95.6%. . © 2023 IEEE.

4.
2023 15th International Conference on Computer and Automation Engineering, ICCAE 2023 ; : 102-108, 2023.
Article in English | Scopus | ID: covidwho-20241629

ABSTRACT

Engineering programs emphasize students career advancement by ensuring that engineering students gain technical and professional capabilities during their four-year study. In a traditional engineering laboratory, students "learn by doing", and laboratory equipment facilitates their discipline-specific knowledge acquisition. Unfortunately, there were significant educational uncertainties, such as COVID-19, which halted laboratory activities for an extended period, causing challenges for students to perform and obtain practical experiments on campus. To overcome these challenges, this research proposes and develops an Artificial Intelligence-based smart tele-assisting technology application to digitalize first-year engineering students practical experience by incorporating Augmented Reality (AR) and Machine Learning (ML) algorithms using the HoloLens 2. This application improves virtual procedural demonstrations and assists first-year engineering students in conducting practical activities remotely. This research also applies various machine learning algorithms to identify and classify different images of electronic components and detect the positions of each component on the breadboard (using the HoloLens 2). Based on a comparative analysis of machine learning algorithms, a hybrid CNN-SVM (Convolutional Neural Network - Support Vector Machine) model is developed and is observed that a hybrid model provides the highest average prediction accuracy compared to other machine learning algorithms. With the help of AR (HoloLens 2) and the hybrid CNN-SVM model, this research allows students to reduce component placement errors on a breadboard and increases students competencies, decision-making abilities, and technical skills to conduct simple laboratory practices remotely. © 2023 IEEE.

5.
CEUR Workshop Proceedings ; 3395:346-348, 2022.
Article in English | Scopus | ID: covidwho-20239057

ABSTRACT

Classification is a vital work to human beings in day today life as it breaks down complex subjects. In the same way, text classification is very important to understand and realize the subject of the text. © 2021 Copyright for this paper by its authors.

6.
International Journal of Intelligent Systems and Applications in Engineering ; 11(2):245-251, 2023.
Article in English | Scopus | ID: covidwho-20237656

ABSTRACT

Early prediction of Alzheimer's disease and related Dementia has been a great challenge. Recently, preliminary research has shown that neurological symptoms in Covid-19 patients may accelerate the onset of Alzheimer's disease. With such a further rise in Alzheimer's and related Dementia cases, having an early prediction system becomes vital. Speech can provide a non-invasive diagnostic marker for such neurodegenerative diseases. This work mainly focuses on studying significant temporal speech features extracted directly from the recordings of the Dementia bank dataset and applying Machine Learning algorithms to classify the Alzheimer's disease related Dementia Group and the healthy control group. The result shows that Support Vector Machine outperformed other machine learning algorithms with an accuracy of 87%. Compared to prior research, which used manual transcriptions provided with the dataset, this study used audio recordings from the Dementia bank dataset and an advanced Automatic Speech Recognizer to extract speech features from the audio recordings. Furthermore, this method can be applied to the spoken responses of subjects during a neuropsychological assessment. © 2023, Ismail Saritas. All rights reserved.

7.
Proceedings of the 17th INDIACom|2023 10th International Conference on Computing for Sustainable Global Development, INDIACom 2023 ; : 1096-1100, 2023.
Article in English | Scopus | ID: covidwho-20235056

ABSTRACT

Covid-19 eruption and lockdown situation have increased the usages of online platforms which have impacted the users. Cyberbullying is one of the negative outcomes of using social media platforms which leads to mental and physical distress. This study proposes a machine learning-based approach for the detection of cyberbullying in Hinglish text. We use the Hinglish Code-Mixed Corpus, which consists of over 6,000 tweets, for our experiments. We use various machine learning algorithms, including Logistic regression (LR), Multinomial Naive Bayes (MNB), Support vector machine (SVM), Random Forest (RF), to train our models. We evaluate the performance of the models using standard evaluation metrics such as precision, recall, and F1-score. Our experiments show that the LR with Term Frequency-Inverse Document Frequency (TFIDF) outperforms the other models, achieving 92% accuracy. Our study demonstrates that machine learning models can be effective for cyberbullying detection in Hinglish text, and the proposed approach can help identify and prevent cyberbullying on social media platforms. © 2023 Bharati Vidyapeeth, New Delhi.

8.
Cybernetics and Information Technologies ; 23(1):125-140, 2023.
Article in English | Web of Science | ID: covidwho-20231878

ABSTRACT

Every country must have an accurate and efficient forecasting model to avoid and manage the epidemic. This paper suggests an upgrade to one of the evolutionary algorithms inspired by nature, the Barnacle Mating Optimizer (BMO). First, the exploration phase of the original BMO is enhanced by enforcing and replacing the sperm cast equation through Levy flight. Then, the Least Square Support Vector Machine (LSSVM) is partnered with the improved BMO (IBMO). This hybrid approach, IBMO-LSSVM, has been deployed effectively for time-series forecasting to enhance the RBF kernel-based LSSVM model since vaccination started against COVID-19 in Malaysia. In comparison to other well-known algorithms, our outcomes are superior. In addition, the IBMO is assessed on 19 conventional benchmarks and the IEEE Congress of Evolutionary Computation Benchmark Test Functions (CECC06, 2019 Competition). In most cases, IBMO outputs are better than comparison algorithms. However, in other circumstances, the outcomes are comparable.

9.
Pers Ubiquitous Comput ; : 1-14, 2021 Mar 03.
Article in English | MEDLINE | ID: covidwho-20243372

ABSTRACT

Many Coronavirus disease 2019 (COVID-19) and post-COVID-19 patients experience muscle fatigues. Early detection of muscle fatigue and muscular paralysis helps in the diagnosis, prediction, and prevention of COVID-19 and post-COVID-19 patients. Nowadays, the biomedical and clinical domains widely used the electromyography (EMG) signal due to its ability to differentiate various neuromuscular diseases. In general, nerves or muscles and the spinal cord influence numerous neuromuscular disorders. The clinical examination plays a major role in early finding and diagnosis of these diseases; this research study focused on the prediction of muscular paralysis using EMG signals. Machine learning-based diagnosis of the diseases has been widely used due to its efficiency and the hybrid feature extraction (FE) methods with deep learning classifier are used for the muscular paralysis disease prediction. The discrete wavelet transform (DWT) method is applied to decompose the EMG signal and reduce feature degradation. The proposed hybrid FE method consists of Yule-Walker, Burg's method, Renyi entropy, mean absolute value, min-max voltage FE, and other 17 conventional features for prediction of muscular paralysis disease. The hybrid FE method has the advantage of extract the relevant features from the signals and the Relief-F feature selection (FS) method is applied to select the optimal relevant feature for the deep learning classifier. The University of California, Irvine (UCI), EMG-Lower Limb Dataset is used to determine the performance of the proposed classifier. The evaluation shows that the proposed hybrid FE method achieved 88% of precision, while the existing neural network (NN) achieved 65% of precision and the support vector machine (SVM) achieved 35% of precision on whole EMG signal.

10.
Neural Comput Appl ; : 1-20, 2021 Aug 12.
Article in English | MEDLINE | ID: covidwho-20241671

ABSTRACT

The coronavirus pandemic has been globally impacting the health and prosperity of people. A persistent increase in the number of positive cases has boost the stress among governments across the globe. There is a need of approach which gives more accurate predictions of outbreak. This paper presents a novel approach called diffusion prediction model for prediction of number of coronavirus cases in four countries: India, France, China and Nepal. Diffusion prediction model works on the diffusion process of the human contact. Model considers two forms of spread: when the spread takes time after infecting one person and when the spread is immediate after infecting one person. It makes the proposed model different over other state-of-the art models. It is giving more accurate results than other state-of-the art models. The proposed diffusion prediction model forecasts the number of new cases expected to occur in next 4 weeks. The model has predicted the number of confirmed cases, recovered cases, deaths and active cases. The model can facilitate government to be well prepared for any abrupt rise in this pandemic. The performance is evaluated in terms of accuracy and error rate and compared with the prediction results of support vector machine, logistic regression model and convolution neural network. The results prove the efficiency of the proposed model.

11.
Healthcare (Basel) ; 11(10)2023 May 10.
Article in English | MEDLINE | ID: covidwho-20238731

ABSTRACT

Convolutional neural networks (CNNs) have shown promise in accurately diagnosing coronavirus disease 2019 (COVID-19) and bacterial pneumonia using chest X-ray images. However, determining the optimal feature extraction approach is challenging. This study investigates the use of fusion-extracted features by deep networks to improve the accuracy of COVID-19 and bacterial pneumonia classification with chest X-ray radiography. A Fusion CNN method was developed using five different deep learning models after transferred learning to extract image features (Fusion CNN). The combined features were used to build a support vector machine (SVM) classifier with a RBF kernel. The performance of the model was evaluated using accuracy, Kappa values, recall rate, and precision scores. The Fusion CNN model achieved an accuracy and Kappa value of 0.994 and 0.991, with precision scores for normal, COVID-19, and bacterial groups of 0.991, 0.998, and 0.994, respectively. The results indicate that the Fusion CNN models with the SVM classifier provided reliable and accurate classification performance, with Kappa values no less than 0.990. Using a Fusion CNN approach could be a possible solution to enhance accuracy further. Therefore, the study demonstrates the potential of deep learning and fusion-extracted features for accurate COVID-19 and bacterial pneumonia classification with chest X-ray radiography.

12.
International Journal of Medical Engineering and Informatics ; 15(2):139-152, 2022.
Article in English | EMBASE | ID: covidwho-2319213

ABSTRACT

The recent studies have indicated the requisite of computed tomography scan analysis by radiologists extensively to find out the suspected patients of SARS-CoV-2 (COVID-19). The existing deep learning methods distribute one or more of the subsequent bottlenecks. Therefore, a straight forward method for detecting COVID-19 infection using real-world computed tomography scans is presented. The detection process consists of image processing techniques such as segmentation of lung parenchyma and extraction of effective texture features. The kernel-based support vector machine is employed over feature vectors for classification. The performance parameters of the proposed method are calculated and compared with the existing methodology on the same dataset. The classification results are found outperforming and the method is less probabilistic which can be further exploited for developing more realistic detection system.Copyright © 2023 Inderscience Enterprises Ltd.

13.
Imaging Science Journal ; : 1-17, 2023.
Article in English | Academic Search Complete | ID: covidwho-2318956

ABSTRACT

The global pandemic of coronavirus disease 2019 (COVID-19) causes severe respiratory problems in humans. The Chest X-ray (CXR) imaging technique majorly assists in detecting abnormalities in the chest and lung areas caused by COVID-19. Hence, developing an automatic system for CXR-based COVID-19 detection is vital for disease diagnosis. To accomplish this requirement, an enhanced Residual Network (ResNet) model is proposed in this paper for accurate COVID-19 detection. The proposed model combines the Depthwise Separable Convolutional ResNet and Pyramid dilated module(DSC-ResNet-PDM) for deep feature extraction. Employing the DSC layer minimizes the number of parameters to mitigate the overfitting issue. Further, the pyramid dilated module is used for extracting multi-scale features. The extracted features are finally fed into the optimized Medium Gaussian kernel Support Vector Machine classifier (MGKSVM) for COVID-19 detection. The proposed model attained an accuracy of 99.5%, which is comparatively higher than the standard ResNet50 and ResNet101 models. [ FROM AUTHOR] Copyright of Imaging Science Journal is the property of Taylor & Francis Ltd and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)

14.
20th International Learning and Technology Conference, L and T 2023 ; : 120-127, 2023.
Article in English | Scopus | ID: covidwho-2316285

ABSTRACT

Covid-19 has had a destructive influence on global economics, social life, education, and technologies. The rise of the Covid-19 pandemic has increased the use of digital tools and technologies for epidemic control. This research uses machine learning (ML) models to identify populated areas and predict the disease's risk and impact. The proposed system requires only details about mask utilization, temperature, and distance between individuals, which helps protect the individual's privacy. The gathered data is transferred to an ML engine in the cloud to determine the risk probability of public areas concerning Covid-19. Extracted data are input for multiple ML techniques such as Random Forest (RF), Decision tree (DT), Naive Bayes classifier(NBC), Neural network(NN), and Support vector machine (SVM). Expectation maximization (EM), K-means, Density, Filtered, and Farthest first (FF) clustering algorithms are applied for clustering. Compared to other algorithms, the K-means produces better superior accuracy. The regression technique is utilized for prediction. The outcomes of several methods are compared, and the most suitable ML algorithms utilized in this study are used to identify high-risk locations. In comparison to other identical architectures, the suggested architecture retains excellent accuracies. It is observed that the time taken to build the model using locally weighted learning(LWL) was 0.02 seconds, and the NN took more time to build, which is 0.90 seconds. To test the model, an LWL algorithm took more time which is 1.73 seconds, and the NN took less time to test, which is 0.02 seconds. The NBC has a 99.38 percent accuracy, the RF classifier has a 97.33 percent accuracy, and the DT has a 94.51 percent accuracy for the same data set. These algorithms have significant possibilities for predicting the likelihood of crowd risks of Covid-19 in a public space. This approach generates automatic notifications to concerned government authorities in any aberrant detection. This study is likely to aid researchers in modeling healthcare systems and spur additional research into innovative technology. © 2023 IEEE.

15.
1st International Conference on Futuristic Technologies, INCOFT 2022 ; 2022.
Article in English | Scopus | ID: covidwho-2314101

ABSTRACT

COVID has made education shift towards online mode. In online mode, instructors have a hard time keeping track of their students. Students' performance in online classes falls considerably below the level of learning due to a lack of attention. This initiative aids in the supervision of students during online classes. Artificial Intelligence (AI) models are being developed to better recognize student activities during online sessions. Many applications rely on determining an individual's mental state. When evaluating which subtask is the most challenging, a quantitative measure of human activity while executing a task can be helpful. Thus, the goal of this research is to create an algorithm that uses EEG data gathered with a Muse headset to measure the amount of cognitive intelligence of students during online classes. The data collected by the Muse headset is multidimensional, and it is pre-processed before being fed into machine learning algorithms. Using feature selection, the dataset's dimension is now reduced. The model's precision and recall were calculated, and a confusion matrix was created. The Support Vector Machine produces better outcomes in the experiment. © 2022 IEEE.

16.
International Journal of Medical Engineering and Informatics ; 15(2):120-130, 2022.
Article in English | EMBASE | ID: covidwho-2312716

ABSTRACT

This research developed a multinomial classification model that predicts the prevalent mode of transmission of the coronavirus from person to person within a geographic area, using data from the World Health Organization (WHO). The WHO defines four transmission modes of the coronavirus disease 2019 (COVID-19);namely, community transmission, pending (unknown), sporadic cases, and clusters of cases. The logistic regression was deployed on the COVID-19 dataset to construct a multinomial model that can predict the prevalent transmission mode of coronavirus within a geographic area. The k-fold cross validation was employed to test predictive accuracy of the model, which yielded 73% accuracy. This model can be adopted by local authorities such as regional, state, local government, and cities, to predict the prevalent transmission mode of the virus within their territories. The outcome of the prediction will determine the appropriate strategies to put in place or re-enforced to curtail further transmission.Copyright © 2023 Inderscience Enterprises Ltd.

17.
Diagnostics (Basel) ; 13(9)2023 May 05.
Article in English | MEDLINE | ID: covidwho-2316351

ABSTRACT

In this research, we demonstrate a Deep Convolutional Neural Network-based classification model for the detection of monkeypox. Monkeypox can be difficult to diagnose clinically in its early stages since it resembles both chickenpox and measles in symptoms. The early diagnosis of monkeypox helps doctors cure it more quickly. Therefore, pre-trained models are frequently used in the diagnosis of monkeypox, because the manual analysis of a large number of images is labor-intensive and prone to inaccuracy. Therefore, finding the monkeypox virus requires an automated process. The large layer count of convolutional neural network (CNN) architectures enables them to successfully conceptualize the features on their own, thereby contributing to better performance in image classification. The scientific community has recently articulated significant attention in employing artificial intelligence (AI) to diagnose monkeypox from digital skin images due primarily to AI's success in COVID-19 identification. The VGG16, VGG19, ResNet50, ResNet101, DenseNet201, and AlexNet models were used in our proposed method to classify patients with monkeypox symptoms with other diseases of a similar kind (chickenpox, measles, and normal). The majority of images in our research are collected from publicly available datasets. This study suggests an adaptive k-means clustering image segmentation technique that delivers precise segmentation results with straightforward operation. Our preliminary computational findings reveal that the proposed model could accurately detect patients with monkeypox. The best overall accuracy achieved by ResNet101 is 94.25%, with an AUC of 98.59%. Additionally, we describe the categorization of our model utilizing feature extraction using Local Interpretable Model-Agnostic Explanations (LIME), which provides a more in-depth understanding of particular properties that distinguish the monkeypox virus.

18.
Revista De Psicologia Del Deporte ; 32(1):68-80, 2023.
Article in English | Web of Science | ID: covidwho-2307240

ABSTRACT

Educators use standardized tests to assess children's ability to learn from other disciplines, such as neuroscience. By looking at this data, we can better understand how kids process and learn data and their ability to learn. This allows us to provide home and school support and specialized learning techniques. A child's development goes through stages from birth to adulthood. Children's growth and development are influenced by numerous factors, including their environment, genetics, and their culture. Kids find it difficult to express themselves, let alone examine their emotions. The field of child psychology can offer vital insight into this situation. Children's development is one of the ultimate goals of these professionals, who aim to improve parenting, child care, education, and psychotherapy by using that knowledge. Psychological and educational variables are removed to understand and research children's education. The modified support vector machine (SVM) method extracts information to predict whether educational and psychological factors influence a child's education. The research work is analyzed in a Java simulation environment, which proves that psychoanalysis based on MSVM has a stronger influence on children's studies.

19.
Acm Journal of Data and Information Quality ; 15(1), 2023.
Article in English | Web of Science | ID: covidwho-2310881

ABSTRACT

Much of today's data are represented as graphs, ranging from social networks to bibliographic citations. Nodes in such graphs correspond to records that generally represent entities, while edges represent relationships between these entities. Both nodes and edges in a graph can have attributes that characterize the entities and their relationships. Relationships are either explicitly known ( like friends in a social network), or they are inferred using link prediction (such as two babies are siblings because they have the same mother). Any graph representing real-world data likely contains nodes and edges that are abnormal, and identifying these can be important for outlier detection in applications ranging from crime and fraud detection to viral marketing. We propose a novel approach to the unsupervised detection of abnormal nodes and edges in graphs. We first characterize nodes and edges using a set of features, and then employ a one-class classifier to identify abnormal nodes and edges. We extract patterns of features from these abnormal nodes and edges, and apply clustering to identify groups of patterns with similar characteristics. We finally visualize these abnormal patterns to show co-occurrences of features and relationships between those features that mostly influence the abnormality of nodes and edges. We evaluate our approach on datasets from diverse domains, including historical birth certificates, COVID patient records, e-mails, books, and movies. This evaluation demonstrates that our approach is well suited to identify both abnormal nodes and edges in graphs in an unsupervised way, and it can outperform several baseline anomaly detection techniques.

20.
5th International Conference on Contemporary Computing and Informatics, IC3I 2022 ; : 1895-1901, 2022.
Article in English | Scopus | ID: covidwho-2293164

ABSTRACT

India recognize a severe public health issue in addition to the COVID-19 outbreak and the growing percentage of patients with related mucormycosis from 2021. An uncommon condition known as mucormycosis is brought on by fungus in the family Mucorales. Mucormycosis is a fairly uncommon illness that is caused by common environmental moulds that may be found in soil and decomposing organic materials. Spores develop into hyphae in a susceptible individual, which subsequently infect nearby tissue, including blood vessels, leading to hemorrhagic infarction. Doctors have offered many hypotheses on this. The issue is if black fungus is present in other countries given how uncontrolled it is growing in India. Patients in India with weakened immune systems are more susceptible to illnesses other than corona virus infection. The revised machine learning strategy which will be created in this work is Adaboost with an Support Vector Machine-based classifier (ASVM). Due of the difficulties in learning SVM and the differential in variety as well as efficiency over straightforward SVM classifiers, ASVM classifier is frequently believed to violate the Boosting principle. The Adaboost classifier used in the study gradually replaces SVM as the primary classifier when the weight value of the training sample changes. On testing data, the mean accuracy of the classification was 97.1%, which was much higher than that of SVM classifiers without Adaboost. © 2022 IEEE.

SELECTION OF CITATIONS
SEARCH DETAIL